A Constrained Optimization Perspectlvew_

NEURAL INFORMATION

UNIVERSITY of PENNSYLVANIA

of Unrolled Transformers ii,{

Javier Porras-Valenzuela, Samar Hadou, Alejandro Ribeiro

University of Pennsylvania

Transformers as Optimizers Unrolled video denoisers generalize to OOD noise
Transformers can be interpreted as descent algorithms

= Task: Reconstruct video X = [x1, ..., x| from noisy X; = x¢ + €, with
= Neural network unrolling interprets transformers as optimizers. Each et ~ N(u,voz1)
layer is an optimization step that decreases an objective.
= Problem: In practice, training may result in f(X,(X;T)) Z Ix¢ — [®(X; T)Jll2
non-monotonic losses along its layers.
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Training transformers to descend improves OOD robustness

Figure 2. Constraints improve robustness. RMSE vs. test perturbation « (| lower is better).

= Key Idea: Constrain layers to decrease loss, like descent algorithms.
" Consider a transformer given by equations Unrolled text classifiers are robust to noisy embeddings

7=V X;_ X SOﬁmaX[(lel—l)Ta{le—l)}

= Task: Classify text with perturbed embeddings.
= Evaluate layerwise loss by attaching a shared readout layer .

¢(X;T) =0 {lez + Ule—l}

f(X,q,® chlogw T))c
= Train each layer ®; to decrease f with step size 0 < a < 1:
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= Setup: Llama 3.1 8B SFT on Alpaca instruction dataset with perturbed
Figure 1. transformers show non-monotonic loss; constrained models token embeddings.
descend smoothly with better OOD robustness. (Left: |, Right: 1)
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Figure 4. Constraints improve eval token accuracy (Left: |, Right: 1).

Theoretical Guarantees

= We bound the optimality gap A% := f(X, ®,(X; T*)) — f(X,Y"). = AlpacaEval win rate vs unconstrained: 50% at v = 0.0, 69.83% at v = 1.5
— preserved |ID while robust OOD.
* Theorem 2 (Convergence): Constrained transformers converge to

near-optimal loss:
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Larger step size « increases robustness
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* Theorem 3 (OOD Generalization): For shifted distribution D, O\ o S
g 04 .\ \.\ \.\. >
1 Cov o Ra= SN Sor
lim minEp , {A*} C(M,o)+ + C'1 - R
Z%OO k<l a 1 o 5 ’ ’ 10Layer 15 0 o0 ° Test Peit.l?rbation (y) " *0

where 7 = d(Dy, D,s) + d(D,, D,) measures distribution shift.

Figure 5. Increasing o« improves monotonic descent and OOD robustness.
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