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Transformers as Optimizers
Transformers can be interpreted as descent algorithms

Neural network unrolling interprets transformers as optimizers. Each

layer is an optimization step that decreases an objective.

Problem: In practice, training unconstrained transformers may result in

non-monotonic losses along its layers.

T∗
U = argmin

T
E
[
f
(
X,Φ(X; T)

)]
(ERM)

This leads to less robustness to OOD perturbations.

Training transformers to descend improves OOD robustness

Key Idea: Constrain layers to decrease loss, like descent algorithms.

Consider a transformer given by equations

Zl = VlXl−1 × softmax
[
(QlXl−1)T (KlXl−1)

]
Φl(X; T) = σ

[
WlZl + UlXl−1

]
Train each layer Φl to decrease f with step size 0 < α < 1:

Constrained Unrolled Transformer

T∗ = argmin
T

E
[
f
(
X,Φ(X; T)

)]
(P-CUT)

s.t. E
[
f
(
X,Φl(X; T)

)]
≤ (1 − αl)E

[
f
(
X,Φl−1(X; T)

)]
, ∀ l

Models trained to optimize this problem exhibit enhanced robustness to

OOD perturbations.
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Figure 1. Unconstrained transformers show non-monotonic loss; constrained models

descend smoothly with better OOD robustness. (Left: ↓, Right: ↑)

Enforce constraints with primal-dual training

Optimize (P-CUT) by alternating primal and dual steps.

Dual problem of (P-CUT)

D̂∗ = max
λ≥0

min
T

L̂(T,λ)

Theoretical Guarantees

We bound the optimality gap ∆∗
k := f

(
X,Φk(X; T∗)

)
− f

(
X,Y∗).

Theorem 2 (Convergence): Constrained transformers converge to

near-optimal loss:

lim
l→∞

min
k≤l

E
[
∆∗
k

]
≤ 1
α

(
ζ(M, δ) + Cδν

1 − δ

)

Theorem 3 (OOD Generalization): For shifted distribution Dx′

lim
l→∞

min
k≤l

EDx′

[
∆∗
k

]
≤ 1
α

(
ζ(M, δ) + Cδν

1 − δ
+ Cτ

)
where τ = d(Dx, Dx′) + d(Dx′, Dx) measures distribution shift.

Unrolled video denoisers generalize to OOD noise

Task: Reconstruct video X = [x1, . . . ,xT ] from noisy x̃t = xt + εt, with
εt ∼ N (µ, γσxI)

f (X,Φ(X̃; T)) = 1
2

T∑
t=1

‖xt − [Φ(X̃; T)]t‖2
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Figure 2. Constraints improve robustness. RMSE vs. test perturbation γ (↓ lower is better).

Unrolled text classifiers are robust to noisy embeddings

Task: Classify text with perturbed embeddings.

Evaluate layerwise loss by attaching a shared readout layer ψ.

f (X̃,q,Φ(X̃; T)) = −
C∑
c=1

qc logψ(Φ(X̃; T))c
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Figure 3. Accuracy vs. test perturbation γ (↑ higher is better).

LLM supervised finetuning: Improves OOD, Maintains ID

Setup: Llama 3.1 8B SFT on Alpaca instruction dataset with perturbed

token embeddings.
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Figure 4. Constraints improve eval token accuracy (Left: ↓, Right: ↑).

AlpacaEval win rate vs unconstrained: 50% at γ = 0.0, 69.83% at γ = 1.5
→ preserved ID while robust OOD.

Larger step size α increases robustness
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Figure 5. Increasing α improves monotonic descent and OOD robustness.
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